<u>pecial edition paper</u>

鉄骨大梁の軸方向スチフナによる補強工法

Retrofit method of H-section steel beams by longitudinal web stiffeners

The purpose of the present study is to investigate how longitudinal stiffener plates can improve plastic deformation capacity of the H-section steel beams with a thinner web. Efficiency of the retrofit can be quantitatively estimated by an accumulated plastic deformation obtained from cyclic loading tests and numerical simulation. The quantitative estimate method of prevention effect of local buckling by the theory of elastic buckling of plates is proposed. The design procedure of stiffeners by prediction formula of plastic deformation capacity and increasing rate in strength is proposed.

●キーワード:H型鋼梁、幅厚比、載荷試験、数値解析

1. はじめに

鉄骨造建築物の大スパン大梁では、大きな曲げ応力に対 して梁せい(梁の高さ)が大きくなることが多い。H形鋼の梁 では梁せいが増加しウェブ(鉛直板)の幅厚比(板材の幅と 厚さの比)が大きくなると、比較的小さい曲げ変形でウェブ の局部座屈による耐力低下が生じるため、現行法令では部 材の板要素の幅厚比が大きくなりすぎないよう制限する規定 を設けている。一方で幅厚比制限が設けられる以前に建設 された建物にはウェブの幅厚比が非常に大きいH形鋼梁を持 つものがあり、このために耐震診断で耐震性能が低く評価さ れる場合がある。

このような建物の耐震補強方法としては新規の耐震要素 (ブレース等)を配置し建物全体としての強度を向上させる 方法が一般的だが、図1に示す線路上空建築物と呼ばれる 軌道、プラットホームの上空を利用した建物では、ブレース 等の配置は列車運行、お客様の流動等を阻害する場合が ある。この場合、建物全体の強度向上ではなく、H形鋼梁 の塑性変形能力自体を向上させることで耐震性能を向上さ せる方法が考えられる。

本研究では、このような既存建築物の大スパンのH形鋼

図1 線路上空建物の補強断面図(イメージ)

大梁に対し、ウェブに軸方向スチフナ(材軸に平行な補強 鋼板)を溶接接合することで塑性変形能力を向上させる工 法について載荷試験と数値解析の結果に基づいて具体的 に検討する。軸方向スチフナのみを検討対象としたのは、 既存建築物の大梁ウェブへの補強材設置は現場溶接が想 定されるが、現場溶接が下向き溶接のみとなる軸方向スチフ ナの設置は経済性に優れると考えられるためである。

スチフナの具体的設計手法について、下記の3つの段階 に沿って提案する。

- 1) スチフナの効果を載荷試験により確認し、試験を模した数 値解析を行い数値解析の有用性を確認する。
- スチフナの効果を単板の弾性座屈理論を準用して定量的 に評価し、スチフナの効果を幅厚比の改善効果として評 価する手法を提案する。
- 3)幅厚比と耐力上昇率、塑性変形能力の関係式を数値解 析による回帰式として導き、回帰式を用いたスチフナ寸法 の設計手順を提案する。

2. スチフナ寸法の設定

効果的な補強のため複数の軸方向スチフナを設置する場 合には、補強区間では塑性変形能力に加え曲げ耐力も向 上する。大梁の地震時の挙動を、図2(a)のような先端部 に集中荷重を受ける片持ち梁の変形に置き換えて考える場 合、無補強区間より補強区間の方が応力は大きいが、曲げ 耐力も無補強区間より補強区間の方が大きい。補強長さが 十分長ければ無補強区間での応力が小さくなり梁端で曲げ 降伏が先行するが(図2(b))、補強長さが短くなると無補 強区間で降伏が先行する(図2(c))ようになる。両者とも梁 の曲げ耐力は向上しているが、後者は無補強部で局部座

Special edition paper

屈が発生する点は無補強の梁と変わっておらず、変形能力 の大幅な向上は期待できない。変形能力の高い補強区間で 曲げ降伏が先行するよう補強長さを設定する必要がある。

ウェブの局部座屈がスチフナ及びフランジ(H型鋼梁の水 平板)で囲まれた範囲(以下、サブパネル)で限定されるようなスチフナ断面の算出方法、つまり図3のようなウェブの局 部座屈を誘導するスチフナ断面の設定方法を検討する。十

分な断面を持つスチ フナを設置すれば、 ウェブの座屈変形が スチフナを超えて拡 大するのを抑制でき るため、サブパネル のみが局部座屈す ると考える。

図3 補強概念図

表1 試験体一覧(スチフナ形状)

名称	間隔(mm)	長さ (mm)	幅(mm)	面数		
1.4D-W72-B	172	800	72	両面		
0.7D-W72-B	172	400	72	両面		
1.4D-W36-B	172	800	36	両面		
1.0D-W72-O	172	550	72	片面		
1.0D-W36-O	172	550	36	片面		
無補強	_	_	_	_		

図5 試験装置全景 (1.4D-W72-B試験体)

3. 載荷試験

3.1 試験概要

表1に示す試験体の交番載荷試験を行った。大梁サイズ は耐震改修を検討している既存線路上空建物の主要な梁 部材の1/2モデルとし、載荷長さは実建物の大梁のシアスパ ン比を参考に梁せいの5倍とした。スチフナ板厚は現場溶接 を考慮しウェブ板厚よりやや薄い4.5mm、スチフナ間隔はウェ ブ高さの1/3に固定し、スチフナ長さ、幅、補強面数(ウェ ブの片側もしくは両側)をパラメータとした。長さについては 便宜的に梁せいを基準に数値を設定した。

図4、5に試験体形状、試験装置全景を示す。試験体は 柱の代わりにベースプレートを有する片持ち梁形状とし、ベー スプレートを浮上り防止治具で反力床に緊結することでベー スプレートの面外変形を拘束した。スチフナとベースプレート には隙間を開け両者が接触しないようにした。試験体への 加力は図6に示す漸増繰り返し載荷とし、載荷途中で耐力 が急激に低下した場合は、そのサイクルで載荷を終了した。 全塑性変位δ_ρは、スチフナを含む梁端部全断面の全塑性 モーメントM_ρを弾性剛性Kで除して求めた。

3.2 試験結果

各試験体の荷重-変位関係を図7に示す。荷重と変位はM_p 時の荷重P_pとδ_pでそれぞれ除して無次元化している。図中には 正負加力時の両方の最大耐力 (P_{max}) 位置を示す。各試験体 とも、P_{max}に達する時点でウェブの局部座屈が観察されている。

表2に、累積塑性変形倍率 η_M (正負各々での倍率)、 η_s (正 負 η_M の和)と終局時(耐力が最大時の90%)の累積塑性変 形倍率 η_a (正負で大きい方の値)を示す。図8には各試験体 の骨格曲線を示す。 η_M 、 η_a の定義、骨格曲線の作図法は

表2 累積塑性変形倍率

試験体	δ_{M^+} (mm)	δ _M - (mm)	η_{M^+}	$\eta_{ ext{M-}}$	η_S	δ_a (mm)	η_a
無補強	53.5	-61.6	2.3	2.6	4.9	107.0	4.6
1.4D-W72-B	96.9	-61.5	3.7	2.4	6.1	87.0	5.2
0.7D-W72-B	68.7	-87.5	2.7	3.5	6.2	126.6	6.0
1.4D-W36-B	71.7	-95.1	3.1	4.2	7.3	106.2	4.6
1.0D-W72-O	89.2	-86.6	3.7	3.6	7.3	136.8	5.7
1.0D-W36-O	84.3	-72.3	3.6	3.1	6.7	136.1	5.8

文献¹⁾ による。η_aの比較では、無補強試験体に比ベ スチフナ補強した試験体は塑性変形能力が向上し ている。η_sの比較では無補強モデルと同程度の値と なるものがあった。

実験結果からは、スチフナ長さが長いほど、また 片面補強よりも両面補強の方が、塑性変形能力が 高いとは限らないことがわかる。具体的には、同じス チフナ幅の試験体1.4D-W72-Bと1.0D-W72-Oを比較 すると、前者の方が後者よりも補強量が多い(スチ フナ長さが長く、かつ両面補強)にもかかわらず、 η_aは後者の方が大きい結果となっている。同様のこと は試験体1.4D-W36-Bと1.0D-W36-O、試験体 1.4D-W72-Bと0.7D-W72-Bについても言える。

4. 数値解析による試験の比較

4.1 解析概要

図9に示す解析モデルにより有限要素解析を行った。載荷 試験と同一サイズの鉄骨大梁を解析モデルとし、梁先端を 強制変位させる解析を行った。試験体と同様に固定端付近 に設置される軸方向スチフナ端部は固定端とは接続しない。 面内方向には20~60mm程度のメッシュで分割し、局部座屈 の発生する固定端付近を細かく分割した。解析には、汎用 有限要素解析ソフトウェアMarcを使用した。載荷サイクルは 載荷試験結果に合わせ、応力-歪関係は板厚ごとの引張

図8 骨格曲線

試験結果を真応力-真歪関係に変換した上で多折線近似し た応力-歪関係を入力データとした。

4.2 解析結果

図10に交番載荷試験と解析の比較として荷重変位関係を 示す。表3に耐力上昇率 (*P_{max}とP_p*の比) τ_o、*K*、η_M、η_aを 載荷試験と数値解析で比較して示す。τ_oはいずれの試験体 でも数値解析結果の方が低い結果となったが、表3の通り両 者の差は2~11%程度であり、試験結果を再現できている。 一方、η_a、η_Mでは実験値、解析値の大小関係は明確では なく、その差が大きいものもある。試験体ごとのη_a、η_Mの大

図9 解析モデル形状

Special edition paper

小関係の順序を比べると、実験値、解析 値とも無補強試験体の値が最小となる傾 向がある。

図11に載荷後の残留変形の写真、数 0 値解析終了時の面外変形のコンター図を -0.5 示す。いずれの試験体についても試験体 -1 に見られる残留変形の状況と数値解析で -1.5 得られた変形状態は概ねよく対応してい 1.5 る。以下に、図2(b)、(c)で述べた2か 1 所の局部座屈の発生位置を中心にスチフ 0.5 ナ長さごとの対応状況を記す。 0

スチフナの最も長い試験体1.4D-W72-B -0.5 では、図2 (b)のような補強範囲内の固 -1 定端側で局部座屈が見られ、コンター図 -1.5 の変形状態と符合する。補強区間の載 荷点側でも図2 (c)のような局部座屈が見 られるが、これは横座屈の影響と考えられ る。 スチフナの最も短い試験体 0.7D-W72-Bは、載荷点側で局部座屈が 見られ、コンター図に見られる変形状態と 符合している。中間のスチフナ長さの試 験体1.0D-W72-O、1.0D-W36-Oでは、局 部座屈が固定端側と載荷点側の両方に 見られるが、コンター図では固定端側の

み変形が卓越している。この違いは、固定端側での局部座 屈が先行して発生することは数値解析で再現できていたもの の、その後の耐力上昇の程度が実験ではより大きかった結 果と考えられる。

軸方向スチフナを持つウェブの等価幅厚比 5

軸方向スチフナによってウェブの局部座屈による面外変形 をサブパネル内に限定することができるならば、スチフナが無 い場合に比べてウェブの局部座屈耐力は上昇すると考えら れる。このようなスチフナによる座屈耐力向上効果を、ウェブ の板厚が増加して幅厚比が見かけ上小さくなったためと考え れば、スチフナ補強時と同等の座屈耐力を与えるような見か けの幅厚比を補強効果の指標とすることができる。この見か けの幅厚比を「等価幅厚比」と呼び、その算出方法を検 討する。

5.1 弾性座屈理論に基づく等価幅厚比の定義

単板の弾性座屈理論²⁾に基づいて等価幅厚比を定義す

表3 累積塑性変形倍率

		実	験値			解	析値		解析値/実験値						
試験体			FEMMM	$_{FEM}\eta_a$	$\frac{1}{1} \frac{1}{1} \frac{1}$	$\frac{1}{1} \frac{1}{1} \frac{1}$	$\frac{1}{1} \frac{1}{1} \frac{1}$	$_{FEM} \eta_a$							
無補強	10.85	1.18	2.62	4.56	9.34	1.12	2.06	7.27	0.86	0.95	0.79	1.59			
1.4D-W72-B	9.11	1.35	3.75	5.19	10.20	1.23	3.74	6.03	1.12	0.91	1.00	1.16			
0.7D-W72-B	9.29	1.24	3.48	6.05	9.14	1.13	2.11	5.43	0.98	0.91	0.61	0.90			
1.4D-W36-B	9.54	1.35	3.13	4.64	9.17	1.32	5.68	8.51	0.96	0.98	1.81	1.83			
1.0D-W72-O	9.89	1.32	3.61	5.70	9.35	1.19	4.68	7.01	0.95	0.90	1.30	1.23			
1.0D-W36-O	9.70	1.32	3.58	5.78	9.35	1.17	2.66	5.09	0.96	0.89	0.74	0.88			

図11 載荷試験の残留変形の写真、数値解析の ウェブ面外方向の変形のコンター図

る。純せん断応力下での四辺が単純支持された長方形板 の弾性座屈せん断応力τ_{cr0}の理論解は、数値計算結果に基 づき近似でき、板の幅bに比べて板の長さaが十分に長い場 合には、弾性座屈せん断応力τ_{cr0}は(1)式で近似できる²。

$$\tau_{cr0} = 5.35 \frac{\pi^2 D}{b^2 h} = 5.35 \frac{\pi^2 E}{12(1-v^2)} \left(\frac{h}{b}\right)^2 \tag{1}$$

ここで、h、E、v:板厚、板材のヤング係数、ポアソン比

$$D = \frac{Eh^3}{12(1-v^2)} : 板の曲げ剛性$$

一方、面内曲げ応力下における四辺が単純支持された 長方形板の弾性座屈圧縮応力σ_{cro}は、数値計算結果に基 づき(2)式で近似できる²。

$$\sigma_{cr0} = k \frac{\pi^2 D}{b^2 h} = k \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{h}{b}\right)^2$$
(2)

ここで、(2)式のkは長方形板の形状比a/bと文献³⁾による 圧縮応力度分布係数 α(図12参照)に応じて決まる定数であ り、安全側の評価となるようkを形状比a/bにより採りうる最小 値k_{min}で置き換えると、αのみより定まる弾性座屈圧縮応力評 価値σ_{cro}が得られる。

$$\sigma_{cr0} = k_{min} \left(\alpha \right) \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{h}{b} \right)^2 \tag{3}$$

$$k_{min}(\alpha) = 2.6\alpha^3 - 1.6\alpha^2 + 2.7\alpha + 4 \tag{4}$$

面内せん断力と面内曲げを同時に受けて座屈する際のせん断応力τ_{cr}と面内曲げ応力σ_{cr}については、(5)式で表される相関関係式から得られることが知られている⁴。

$$\left(\frac{\sigma}{\sigma_{cr}}\right)^2 + \left(\frac{\tau}{\tau_{cr}}\right)^2 = 1$$
 (5)

梁ウェブに作用するせん断応力τと面内曲げ応力σの間に は、梁の断面形状に応じて定まる関係式が成立するため、 (5)式からウェブの弾性座屈時せん断応力τ_{cr}を得ることがで きる。ウェブを軸方向スチフナで補強した場合には、サブパ ネルごとに上記の手順でτ_{cr}を求め、それらの最小値が補強 ウェブ全体としてのτ_{cr}'を与えるものとする。

補強していないウェブの座屈係数*K*_{cr}は(6)式で示すように、 ウェブ寸法に関わらずせん断応力と曲げ応力の比ならびに曲 げ応力分布のみで決まる。また補強によって向上した座屈 時せん断応力τ_{cr}'も(6)式と同様に*K*_{cr}を用いて(6')式で示 すことができる。

$$\tau_{cr} = K_{cr} \frac{\pi^2 E}{12(1-\nu^2)} / \left(\frac{d}{t_w}\right)^2$$
(6)
$$\tau_{cr}' = K_{cr} \frac{\pi^2 E}{12(1-\nu^2)} / \left(\frac{d}{t_w}\right)^2$$
(6')

ここで、d、tw:ウェブ高、ウェブ厚

従って補強による座屈耐力向上効果を表す等価幅厚比 _{eq}(d/t_w)は、(7)式のように得られる。

$$_{eq}\left(d/t_{w}\right) = d/t_{w}\sqrt{\tau_{cr}/\tau_{cr}'} \tag{7}$$

5.2 等価幅厚比の算定例

等価幅厚比の定義の適用例として、3章の載荷試験に用 いた試験体のH形断面梁を対象として等価幅厚比を算定し てみる。算定例として、ウェブが無補強の場合及び軸方向 スチフナで高さ方向に等分割(スチフナ枚数n=1、2、3)さ れている場合の算定結果を表4に示す。 $k_{min}(a)$ は、図12に 示すとおりウェブ内の面内圧縮応力分布とスチフナの位置で 決まるaから(4)式により求まる。n=2、3の場合では、面内 圧縮応力が大きく座屈が先行する最外の補強領域のみに着 目すれば十分である。無補強のウェブ幅厚比(d/t_w =87.0) に関してスチフナ補強により低減された等価幅厚比 $_{eq}(d/t_w)$ が得られる。

6. 数値解析による計算式の提案

フランジ、ウェブの幅厚比、鋼材の降伏比(引張強度に 対する降伏強度の比)をパラメータに数値解析を行いτ₀、μ_a の算出式を提案する。図13に解析モデルの幅厚比の関係 図を示す。図中の×は3章の載荷試験体の幅厚比を示す。 補強する大梁として大スパンの梁を想定し、ウェブの幅厚比

表4 等価幅厚比 eq(d/tw) の計算例

スチフナ枚数n	α	$k_{min}(\alpha)$	b/h	$\tau_{cr} / \frac{\pi^2 E}{12(1-\nu^2)} / \left(\frac{d}{t_w}\right)^2$	$\sqrt{ au_{cr}/ au_{cr}'}$	$_{eq}\left(\frac{d}{t_{w}}\right)$
無補強	2	23.8	$d/t_w = 87.0$	3.174	1	87.0
<i>n</i> =1	1	7.70	$(d/2)/t_w = 43.5$	4.963	0.800	69.6
n=2	2/3	5.86	$(d/3)/t_w = 29.0$	8.596	0.608	52.9
n=3	1/2	5.28	$(d/4)/t_w = 21.8$	13.810	0.479	41.7

図12 スチフナ枚数nと圧縮応力度σ、圧縮応力度分布係数αの関係

は学会規準⁴⁾ を参考にP-I~IIIのランクとなる板厚さ (*t_w*=6 ~11) とした。降伏比は鋼材として一般的な0.6~0.8程度を 想定する。

数値解析は4章と同様のモデルで単調増分解析とし、異なる幅厚比b/t₆、d/t_wを組合せた12種類の無補強のモデルについて降伏比を3種類に変化させた解析を行った。

6.1 幅厚比と耐力上昇率 τ_o、塑性変形倍率 μ_aの関係

τ₀について、数値解析結果から(8)式のような回帰式を作成した結果、降伏比の逆数yは括り出すことができ、

幅厚比とてのは一次の相関が強いことが分かった。

$$\tau_{0} = \gamma \left(-0.0121 \frac{b}{t_{f}} - 0.00224 \frac{d}{t_{w}} + 0.339 \right) + 1.01 \quad (8)$$

ただし、1.3 ≦ $\gamma \le 1.7$ 、5.36 $\le \frac{b}{t_{f}} \le 8.33$ 、47.5 $\le \frac{d}{t_{w}} \le 88.7$
 $b_{st_{f}}$: 片側フランジ幅、フランジ厚

図14に(8)式の計算値と解析値の一致状況を示す。計 算値と解析値の誤差は2%以内となった。

μ_aについて、数値解析結果から(8)式と類似した形の(9)式で回帰式を得ることができる。

$$\mu_{a} = \gamma \left(\frac{58.4}{b/t_{f}} + \frac{299}{d/t_{w}} - 10.7 \right) + 2.28 \tag{9}$$

$$\hbar t_{c} = 1.7, \quad 5.36 \le \frac{b}{t_{f}} \le 8.33, \quad 47.5 \le \frac{d}{t_{w}} \le 88.7$$

図15に計算値と解析値の一致状況を示す。(9)式による計 算値と解析値の差は10%以内となった。

6.2 スチフナ寸法(幅、厚さ、長さ)の設定

2章で述べたとおり、スチフナの寸法を適切に設定すること でウェブの局部座屈をサブパネル内に限定することができ、 このことから(8)、(9)式と_{eq}(*d*/*t*_w)からスチフナ補強の効 果を定量的に評価することができる。この前提となるスチフナ 断面(幅、厚さ)の必要量について、既往のスチフナ断面

の算定式 3.5) を組み合わせた (10) 式より算定ができる。

$$I_{\text{plif}(\texttt{M})} = \frac{1}{12} t_s \left\{ (2w_s + t_w)^3 - t_w^3 \right\} \ge 0.55 dt_w^3$$

$$I_{\text{plif}(\texttt{M})} = \frac{1}{3} t_s w_s^3 \ge 0.55 dt_w^3$$
(10)

ここで、 I_{imm} : 両側スチフナの断面2次モーメント I_{jmm} : 片側スチフナの断面2次モーメント $t_{s,ws}$: スチフナ厚、スチフナ幅

スチフナの長さ1_sは、梁の曲げ応力分布に応じて応力が 十分小さくなる範囲まで延長することとなり、建築物の大梁そ れぞれで応力分布が異なることから、梁の断面寸法、長さ のみから計算することはできない。構造計算を行い求めた曲 げ応力分布に基づき、1_sを設定する必要がある。

 			 	 	 	_	 _	 	_	 	 _	 	 _	 	
	τ	L													
よ	20	D													
 			 	 	 	_	 -	 	_	 	 _	 	 _	 	

ウェブを軸方向スチフナで補強したH形鋼大梁の塑性変 形能力について、片持ち梁形式の載荷試験と数値解析を行 い、スチフナ諸元と補強効果の関連を検証した。

本研究で明らかになった知見は、既存建物のウェブ幅厚 比の大きいH形鋼大梁の塑性変形能力を向上させる耐震補 強の具体的な設計手法の基礎となる。

本論部分では詳細な紹介は割愛するが、(8)、(9)式を既 往の載荷試験結果を比較することで適切な安全率を設定し、 (7)~(10)式を用いて既存線路上空建物の耐震補強の試 設計を行うことで、具体的な設計手法の検討を行っている。

参考文献

- 鋼構造建築物の構造性能評価試験法に関する研究委員会 報告書,建築研究所・日本鉄鋼連盟,2002.
- S. P. Timoshenko and J. M. Gere: Theory of Elastic Stability, McGraw-Hill Book, 1961.
- 3) 鋼構造設計規準付. ウェブプレートの座屈検定とスチフナの 算定,日本建築学会, 2005.
- 4) 鋼構造座屈設計指針,日本建築学会, 2009.
- 5) 鋼構造限界状態設計指針, 日本建築学会, 2010.

