pecial edition paper

地盤振動の 解析的検討手法の開発

新幹線の高速化に伴い、鉄道周辺における地盤振動の問題の増加が予想される。これまで、列車走行時の構造物からの加振 と周辺地盤の振動伝播に関する簡便なモデルを提案してきた。また、地盤振動について指摘の多い軟弱地盤における杭基礎の 橋梁構造物について、解析手法の検証および対策工の検討が行われてきている。そこで、本研究では比較的良好な地盤におけ る直接基礎に対しても本手法が適用できるかを検討し、さらに対策工の材料やサイズなどの諸条件を精査し、効果的な対策工を 提案した。

●キーワード:地盤振動対策、振動対策工、連続地中壁、軸対称モデル

はじめに

新幹線高速化に伴い、列車通過時に構造物から地盤に 伝わる振動が大きくなることが想定される。しかしながら、こ れらの地盤振動の評価方法や、効果的に地盤振動を低減さ せる対策工法の選定方法については、明確に示されていな いのが実状である。

これまで、地盤振動に関する指摘が多い「地盤が軟弱な エリアでの振動」に対して、構造物近傍で実施する振動対 策工(連続地中壁)の効果を評価する検討手法の提案¹¹を 行ってきた。この検討手法が比較的良好な地盤に対しても適 用可能か、実際の地盤振動の計測結果をもとに検証した。 さらに、比較的良好な地盤において効果的な対策工を選定 するため、対策工の材料や壁厚、深さを変えて解析的検討 を行った。ここでは、その研究成果について報告する。

2. 地盤振動対策について

地盤振動とは、図1に示すように高架橋上を列車が通過す る際に構造物に加わる力が橋脚を通じ、地盤内を通ってある 対象地点に伝播してくる振動をいう。地盤における振動対策 は、①発生源付近における対策②伝播経路における対策、 そして③受振点における対策に分けられる。その中で、鉄 道事業者が容易に実施できる箇所は鉄道用地内に限定され るため、高架橋沿いの空溝や遮断壁(地中連続壁)など の①が有効的な対策となる。

次に、遮断壁による振動低減概念を図2に示す。振動源 から伝播した入射波には遮断壁を回折する波動と、遮断壁 を透過する波動がある。遮断壁を透過する波動に対して、 その材料は地盤と比べてより硬い材質、あるいはより軟らか い材質とすると振動遮断効果が大きいことが分かっている。 そこで本検討では、より硬い材質としてコンクリート、より軟ら かい材質としてEPS(発泡ポリスチレン)を対策工の材料と して選定することとした。

図2 遮断壁における振動低減の概念

3. 解析手法の検証

3.1 解析手法の概要

ある対象地点での振動は、図3に示すように列車の移動に 伴い複数の橋脚から位相差を持った波が合成されて生じる ため、地盤の成層状況や列車速度によって異なったものとな る。ここでは、列車振動が測定点に影響すると想定される4 基分の橋脚をモデル化して解析を行うこととする。

地盤振動解析を行うにあたっては、まず橋脚1基分とその 周辺地盤を図4のように軸対称有限要素法(以降、軸対称 FEM)でモデル化する。モデル化した現状地盤について振 動解析を行い、橋脚と地表面節点の間の伝達関数を求める。 次に、列車通過時に実際測定点で測定した地盤振動測定 データを用い、4基分の橋脚へ各々の伝達関数から逆算して 個々の橋脚加振力を求める。そして、新たに作成した対策 工を考慮したモデルに再度橋脚加振力を与え、橋脚から測 定点に伝わる振動加速度時刻歴や振動レベルなどを求め、 対策前の値と比較し効果を評価することとした。

図4 軸対称FEM概念図

3.2 地盤振動測定

東北新幹線の直接基礎を有する高架橋を対象箇所とし、 表1に示す諸元を持つ試験列車が対象箇所を通過したときの 地盤振動を測定した。地盤振動測定データは、図5のように 線路中心から12.5m、25.0m、50.0mの3地点に対し、線路 方向(X方向)、線路直角方向(Y方向)、そして鉛直方向(Z 方向)の3成分について、5/10,000秒間隔で約16秒間同時 計測したものである。図6に地盤振動測定波の一例を示す。

表1 試験列車諸元

3.3 解析モデルの構築

3.3.1 橋脚のモデル化

本検討で対象とした高架橋は、土被り5m程度の直接基礎の橋脚である。実際の橋脚は矩形(実線表示)なので、 軸対称の円形(着色表示)にモデル化する。フーチングの モデル化半径Rは、フーチングの平面積が等価な円の半径と し、脚部のモデル化半径rはフーチングのモデル化半径Rか ら「脚前面からフーチング端部までの距離L」を減じた値とし た。橋脚のモデル化イメージを図7に示す。

図7 橋脚のモデル化イメージ(上:平面図、下:断面図)

3.3.2 地盤のモデル化

本検討で対象とした箇所の地盤構成は、GL-3m以深がN 値30以上の洪積砂質土が主体であり、モデル化にあたって は表2に示す地盤定数を解析上の値とした。列車通過時の 地盤のひずみは微小と考えられることから、地盤定数はPS検 層結果をそのまま用い、減衰定数hは橋脚(RC) h=2.0%、 地盤h=3.0%に設定し、地盤定数は下記のとおりとした。

- (a) せん断剛性Gは、G=ρVs²から仮定
- (b) せん断波速度Vsは、砂質土はVs=80N^{1/3}、粘性土は Vs=100N^{1/3}から仮定【耐震標準4.3】

土層 区分	層厚 (m)	単位体積重量 γ(kN/m ³)	せん断剛性 G (MN/m²)	ポアソン比 ν
Ts	0.60	15.0	15.0	0.490
Dc	0.90	15.0	22.0	0.490
Ds1	1.50	16.1	23.6	0.497
Ds2-1	3.00	17.5	64.2	0.492
Ds2-2	1.90	17.8	95.7	0.489
Ds2-3	0.90	15.8	92.7	0.488
Ds2-4	3.75	20.2	129.0	0.488
Ps	_	20.1	128.0	0.488

表2 解析上の地盤定数

※ここで、Ts:旧表土・舗装、Dc:洪積粘性土層、Ds1:洪積第1砂質土層、 Ds2:洪積第2砂質土層、Ps:砂礫層を示す。

3.3.3 振動解析モデル

振動解析は、橋脚基礎および周辺地盤を軸対称でモデル 化し、減衰を考慮した粘弾性FEMとした。

(1) モデル化領域

解析モデルの幅は、地盤振動測定を行う地点の中で最も 橋脚から離れた地点に解析上境界の影響が及ばない距離を 考慮し100m程度とした。解析モデルの深さは、幅の2/3を目 安とし、70m程度とした。 また、橋脚は地表面以深のみをモデル化している。橋脚 の地上部をモデル化しないと、その部分の質量は無視される が、橋脚加振力逆算時にその分の加振力が計算され、全 体の整合性は図れるため結果には問題ない。

(2) 要素分割

FEMは離散化モデルであるため、振動解析時にせん断 波を伝達することができるように地盤要素分割ピッチを適切に 設定する必要がある。FEM要素分割の目安は、以下の仮 定より、せん断波速度Vs/(4f)~Vs/(6f)とした。

- ・最大振動数fは50Hz(振動測定時間間隔5/10,000秒に 対する最大周波数)
- ・せん断波を伝達するための要素幅・高さの最小値は1波
 長の1/4~1/6程度
- (3) 境界条件

解析モデルの橋脚側(左側)の地盤の境界条件は、鉛 直加振の場合水平固定・鉛直自由、水平加振の場合水平 自由・鉛直固定とした。また、自由地盤(右側)の境界条 件は軸対称半無限地盤要素を付加した。この要素設定によっ て自由地盤および主解析領域との間に粘性境界が定義され る。底面はモデル下面にPs層の物性値を考慮した粘性境界 に設定する。橋脚上面は、モデル化上の橋脚上面中心を加 振点とするが、それ以外の橋脚上面の各節点は加振点と同 一変位となるような拘束条件を設定する。

(4) メッシュ図

上述(1)~(3)を考慮し、現状解析の検討に用いたメッシュ図を図8に示す。

3.4 現状地盤の振動解析

現状地盤の振動解析は、橋脚中心に適当な波を与えるこ とでその地盤特性に合った伝達関数を抽出するものである。 橋脚中心から入力された波が地表面各節点へ伝播し、伝 達関数として抽出されるイメージを図9に示す。実際に抽出さ れた伝達関数は、振動測定点から橋脚までの距離に応じて 図10のようにそれぞれ異なる特徴を示す。

図10 地盤振動測定点の伝達関数(12.5m地点Z方向)

3.5 橋脚加振力の算出

4基の橋脚中心から振動測定点までの距離に対応したそ れぞれの伝達関数と地盤振動測定データを用いて、列車速 度、位相差などを考慮し、橋脚中心位置の橋脚加振力を逆 算した。なお、振動測定データには初期値のずれが見られ たため、軸補正を行って解析に使用している。求められた橋 脚加振力をフーリエスペクトルで表示したものの一例を図11に 示す。

図12は、12.5m地点、25.0m地点、50.0m地点のそれぞ れの地盤振動測定データから算出した橋脚加振力時刻歴波 形(線路方向)を示したものである。12.5m地点と25.0m地 点の地盤振動測定データから求めた橋脚加振力は波形が 類似しており、列車通過時とその前後の状況をとらえている。 一方、50.0m地点の地盤振動測定データから算出した橋脚 加振力は、列車通過時の加振力を表現できていないため、 解析に用いる地盤振動測定データから適用除外とした。

3.6 振動レベルの算出

各地点における振動レベルは、前節で信頼性があると判 定した12.5m地点および25.0m地点における地盤振動測定 データから逆算した橋脚加振力を用いて算出している。それ ぞれ算出した振動レベル「計算値12.5」および「計算値

		測定データから算出した 振動レベル	12.5m 測定データから算出した 各地点における振動レベルと差異		25.0m 測定データから算出した 各地点における振動レベルと差異	
		測定値 (dB)	計算値 12.5 (dB)	測定値に対する差異(%)	計算値 25.0 (dB)	測定値に対する差異 (%)
v ± th	12.5m	48.5	48.5	0.0	50.6	4.2
入力内	25.0m	48.7	48.9	0.3	48.7	0.0
VII	12.5m	46.0	46.0	0.0	50.0	8.7
тЛП	25.0m	43.9	41.7	5.0	43.9	0.0
7 卡向	12.5m	51.5	51.5	0.1	53.4	3.8
乙刀円	25.0m	46.6	46.5	0.3	46.6	0.0

表3 測定値と計算値の振動レベル(オーバーオール値)の比較

25.0」と実際の地盤振動測定データから算出した振動レベル 「測定値」とを比較し、それらの差異を求め、表3に整理した。 特に差異が大きい箇所を網掛けしている。これに着目すると、 12.5m測定データを用いたほうが測定値に対する差異が少な いことが分かる。そこで、対策工を講じた後の振動レベルな どの算出には12.5m測定点で測定した地盤振動測定データ を用いて算定することとした。

4. 対策工の検討

4.1 対策エモデルの作成

鉄道用地内で施工可能な対策工として、コンクリート、 EPSの2種類の材料に対し、壁厚、深さを変えた12ケースに ついて検討を行った。対策工の組み合わせを表4、解析に 必要な個々の材料の物性値を表5、そして壁厚0.4m深さ 15mの対策工をした場合のFEMモデルメッシュ図の一例を 図13に示す。

材料	壁厚(m)	深さ(m)	
		15m	
	0.4m	30m	
		50m	
		15m	
	0.8m	30m	
		50m	
		15m	
	0.4m	30m	

表4 対策工の組み合わせ

±	
CZ	対東上の物性値

0.8m

EPS

50m

15m

30m

50m

対策工 の種類	単位体積重量 γ(kN/m ³)	せん断剛性 G(MN/m²)	ポアソン比 ν	減衰定数 h
コンクリート	24.5	11132000	0.17	0.02
EPS	0.1	1400	0.10	0.02

図13 FEMメッシュ図 (橋脚付近拡大:壁厚0.4m、深さ15.0mの対策工考慮)

4.2 対策エモデルの振動解析

現状地盤と同様に、対策工モデルに対しても軸対称FEM による振動解析を行い、地表面各節点の伝達関数を求める。 実際の対策工は橋脚から一定距離離れた連続壁であるが、 本解析は軸対称でモデル化しているため、モデル化上の対 策工は図14に示すように各橋脚を中心に一定の距離で円周 上に囲った円となる。ここで、軸対象の中心軸CLから12.5m 地点までのFEM断面に着目すると、実際の対策工位置とモ デル化上の対策工位置にずれが生じ、伝達関数にも差異が 生じる。そこで、実際の対策工位置前面から12.5m地点ま での距離Lとモデル化上の対策工位置前面から12.5m地点ま での距離Lとモデル化上の対策工位置前面から12.5m地点ま

4.3 振動レベルの算出

現状地盤の場合と同様、逆算した橋脚加振力と12.5m地 点で測定した地盤振動測定データから、振動加速度時刻歴 や振動レベルを算出し、その低減効果の有無によりそれぞれ の対策工の有効性を評価した。5章に対策工の検証結果を 示す。

5. 対策工の検証

5.1 対策工の種別による比較

図15は、振動加速度フーリエスペクトルを方向別に算出した結果である。地盤振動測定データから求めた対策前の「測定値」を破線、対策工を実施した後の「計算値」を実線で示している。

対策工をコンクリート連続壁とした図15(a)の場合、線路直角方向では「計算値」の値が上昇しているケースもあり振動低減効果は期待しがたいが、線路方向および鉛直方向では人が振動を感知できる4Hz~10Hzの範囲内で振動低減効果が読み取れる。また、対策工をEPS連続壁にした図15(b)の場合は「計算値」のほうが値が大きく、有効的な結果は得られなかった。

⁽上:線路方向、中:線路直角方向、下:鉛直方向)

5.2 対策工の壁厚や深さによる比較

図16は、対策工実施前後の振動レベル(オーバーオール 値)をプロットしたグラフで、対策工の厚さや深さによる効果 を比較したものである。

鉛直方向は「測定値」に対する「計算値」が小さく、ど のケースでも対策工を実施することで振動レベルが低減して いる。その中では、対策工の幅は広く、深さは深い方が、よ り低減効果あることが分かる。線路方向および線路直角方 向において、コンクリート連続壁の場合、対策工前後で効果 が同程度であるのに対し、EPS連続壁の場合、対策後の振 動レベルの方が大きな値となっている。

図16 振動レベル(オーバーオール値)の比較 (上:線路方向、中:線路直角方向、下:鉛直方向)

6. まとめ

今回の結果より、軟弱地盤において提案した地盤振動の 解析手法は、直接基礎を有する比較的良好な地盤での振 動解析にも適用可能であることを確認できた。検討の結果、 以下のことが提案できた。

(1) 地盤振動測定データ

橋脚加振力の算定には、12.5m地点で測定された地盤振 動測定データを用いるのが最も再現性が高い。

(2) 実効性のある対策工

対策工の材料としてはコンクリートが優位であり、対策範 囲、壁厚および深さの感度は鈍いものの、対策工を厚く、深 く配置する方が有効である。

参考文献

 中出千博,渡邊明之;実効性の高い地盤振動対策工の設計・ 施工手法の開発,テクニカルレビューNo27,2009.5.