Special edition paper

積雪層からの 融雪水量推定手法の構築

融雪期の斜面崩壊に対する列車運行の安全性を確保するため、積雪からの融雪水量推定手法の開発に取り組んでいる。只 見線大白川駅近隣での観測を基に、異なる理論的アプローチを用いて積雪からの融雪水量の時系列推定を試み、4つのモデル を構築した。観測地での実測値との推定誤差は、物理モデルでRMSE(二乗平均平方根誤差)が0.66mm/h、統計モデルで はRMSEが0.173mm/10minであった。これは融雪期の頻繁に見られる日中の融雪強度4~6mm/hに対して、モデル推定が1割 程度の誤差であることを意味している。

●キーワード:積雪底面流出、熱収支法、融雪熱量温度計、RT モデル、貯留関数

. はじめに

融雪期の気温上昇および日射、あるいは降雨によって生じ る融雪水を誘因とする斜面災害が発生する場合がある。斜 面上の残雪を巻き込んだ土砂災害としては、2001年3月福島 県内沿線でののり面崩壊、2003年3月長野県内沿線での落 石などがあげられる。

融雪は晴天時や気温上昇時に起こりやすいが、積雪の融 解や降雨で発生した融雪水の時間毎での定量的な評価は難 しい。そのため、気象庁の雪害注意情報などは日単位であり、 列車運行に求められる細かい時間精度の情報の提供は行わ れていない。

そこで本研究では、積雪・融雪に関連する気象地象観測 を只見線大白川駅近隣に設置した観測地で実施して、この 観測データを基に、積雪層から地面へ浸透する融雪水量を 推定する手法の構築を行なった。鉄道事業に反映することを 目的として、10分から1時間単位という時間精度での推定解 析が可能なモデルを構築し、合わせて、線路沿線でも観測 が可能な簡易で耐久性の高い観測機器の開発を行った。本 稿では、2009/10年冬季までの観測結果を基にした実施内 容を報告する。

2. 積雪融雪観測

2.1 観測地と観測概要

新潟県魚沼市大白川(標高約350m)に観測地を設置し、 2005年12月から観測を行っている。本観測地では積雪・融 雪に関わる観測可能な情報を獲得するため、現在では図1 に示すように、気象観測、雪中観測および地象観測の自動 計測や積雪断面調査を実施している。

2.2 積雪層底面流出の計測

日射、気温上昇や降雨によって積雪層に熱エネルギーが 与えられることで、積雪表面で融解が起こる。この融雪水は 積雪層内で拡散・浸潤あるいは重力により下方浸透するが、 この移動中に周辺の雪氷により熱を奪われ、積雪層内にて 再氷結する場合もある。再氷結せずに積雪層底部に達した 融雪水は積雪底面流出として、積雪と地表面の境界に供給 される。図2はメカニズムを簡略化した模式図である。積雪 底面流出(*RmとRr*の合算)は、積雪層を通過してきた降 水の総量と捉えることができる。

図1に示すさまざまな観測のうち、積雪層から地表面への 積雪底面流出を直接的に計量することが可能な観測機器 は、積雪重量計と融雪ライシメータ(集水、計測する装置) 及び、土壌水分計である。これらの計測が、A_{in}=A_{out}及び E=0の仮定が成立する環境条件であれば、観測機器からの 出力値を実測値として使用することができる。

一方、積雪期に4回程度の積雪断面計測を実施している (図1)。この際に、長い筒状の積雪水量サンプラーを用いて、 積雪表面から地表面までの積雪の総水量をサンプリングによる 手動計測を行なっている。この総水量が、以降の1~2ヶ月間 の融雪期に融雪水として地表面に供給されるはずであるが、 2008/09冬季での観測では、融雪ライシメータが捉えた融雪 水の総量と積雪水量サンプラーによる総水量に相違が生じて いた。前出の仮定条件のうち、E=0は気象観測データと照合 して、ほぼ問題なく成立していると判断できたため、A_{in}=A_{out} が成立しない状況となっているのではないかと推察された。

図1 大白川観測地での観測実施状況

図2 積雪層内での液体水の収支

図3 エンクローズ・タイプの 融雪ライシメータ

2008/09冬季観測での不具合は、融雪ライシメータ受水部 直下の枡部分が空洞となるため、受水部直上の積雪層から の融雪水が鉛直浸透流出せずに、毛管吸引などにより受水 部周辺の積雪層や地表面へ不飽和流出する現象が卓越し て、融雪水が適切に捕捉できなかった(*A*_{in} < *A*_{out})ためと 推察される。特に、不飽和状態である融雪初期から重力排 水の起こる融雪最盛期が始まるまでの期間に、全体の5割程 度の融雪水が捕捉できなかったと思われる。

このような原因の推察に基づいて、2009/10冬季観測では、 図3のように遮水シートで観測対象をエンクローズ(閉じる)処 置を試行した。この処置により、エンクローズ・ライシメータ¹⁾とし て、A_{in}=A_{out}の条件を満たすことが概念上可能となる。実際に エンクローズ処置試行後となる2009/10冬季観測の融雪ライシ メータ計測出力値は損出が格段に減少したことが確認でき、 融雪ライシメータの出力値を実測値として使用することとした。

2.3 熱量計測のための簡易なセンサーの開発

融雪は、日射や降雨からの熱量で生じる現象である。融 雪を起こす熱量に関しては、積雪表面での熱収支から融解 熱量を求める熱収支法を用いて、

 $Q_M = Q_R + Q_H + Q_L + Q_P + Q_C \qquad \cdot \cdot \cdot (1)$

ここで、Q_M:融解熱量、Q_R:正味放射量、Q_H:顕熱伝達 量、Q_L:潜熱伝達量、Q_P:雨からの伝達熱量、Q_C:雪中熱 伝達量で求められる。この熱収支法から融雪水量を推定す る方法は雪氷学の分野で従来から良く活用されているが、多 くの気象要素を観測値入力として要求することがこの理論を 活用するうえでの課題となる。

そこで、日射と気温の両方を1つの出力値で代表させるよう な簡易なセンサーの開発を試みた。これは温度測定用の汎 用センサーである白金抵抗測温体(Pt100)を感知部に使 用して、ガラス管のカバーを取付けたり、ガラス管内部や Pt100感知部を塗装したりする処理を施したもので、融雪熱 量温度計と名付けている²⁰。塗装は熱量の吸収率を変化さ せるために、また、カバー取付は外環境(風や付着雨滴の 蒸発)による熱損失を防ぐための処理で、数種類の組み合わせを考案した。2008/09冬季に試作品を作成して試験的計測をおこない、従来から研究に使用されている放射収支計

から算出される融雪熱量 と比較して、良好な相関 関係を確認した(図4)。

2009/10冬季には、 試作した融雪熱量温度 計の加工の種類を減ら して、より効果的に融雪 推定を可能にする感知 部のみに限定した融雪 熱量温度計プロトタイプ を作成した (図5)。ここ では、ガラス管カバーを 取付けたものを融雪熱 量温度計 (透明)、 Pt100の感知部を直接黒 く塗ってからガラス管カ バーを取付けたものを融 雪熱量温度計(黒塗) として、融雪水量推定 解析の入力値として適

図4 融雪熱量と融雪熱量温度計 (黒塗)との比較

図5 融雪熱量温度計プロトタイプ

積雪底面流出量の推定

物理的手法および統計的手法それぞれ2つずつの推定モ デルに基づいて積雪底面流出量の推定を行った。

3.1 熱収支法に基づいた物理モデル

3.1.1 モデルの構成

用している。

積雪融雪の熱収支に基づいた物理理論に則した推定法 では、積雪表面で外環境からの熱量流入によって融解する 融雪量を推定する表面融雪モデルと、その表面融雪水が積 雪層内を浸透して積雪底面(=地表面)まで到達することを 表現する浸透モデルの2段階で構成した³。

表面融雪モデルとして2つのモデルを構築した。1つは、気 温や日射量を入力とするTemperature & Radiation Index Model(以降、RTモデル)であり、もう1つは、前述2.3で 開発した融雪熱量温度計(黒塗)の出力値を放射量の代 わりに使用する融雪熱量温度計モデルである。次の段階とな る浸透モデルについては共通のモデルとした。

3.1.2 RT モデル

気温と放射量を入力値とするRTモデルでは、熱収支法としてKonyaら⁴⁾の提案式を採用し、融解熱量(Q_M)による表面融雪量:Mは、T:気温(\mathbb{C})とK:全天日射量(Wcm²)より、

 $M = aT + bK + c \qquad \cdot \cdot \cdot (2)$

で算出される。観測データを用いて、前出式(1)の融雪 熱量(Q_M)を融解の潜熱l(=0.334×10⁶Jkg⁻¹)で除した融 雪量(M')を求め、M'に対する重回帰分析を行った。そ の結果、a=0.3843, b=10.037, c=-26.427を得た。

3.1.3 融雪熱量温度計モデル

RTモデルで採用したKonya⁴らの提案式を使用して、前 章2.3の融雪熱量温度計による計測値を入力値とした場合の 融雪熱量温度計モデルの推定式を、

 $M = a'x_{\rm b}^2 + b'x_{\rm b} + c' \quad \cdot \quad \cdot \quad (2)$

x_b:融雪熱量温度計(黒塗)の計測出力値(℃)、係数:a',b',c' とする2次多項式と設定した。前節3.1.2と同様にM'に対す る重回帰分析によって係数を求め、a'=0.231, b'=7.0, c'=-14.3となった。

3.1.4 積雪層浸透モデル

積雪層表面での融雪水および降雨による雨水が積雪層内 部を下方浸透して積雪底面流出となるモデルとして、中津川 ら⁵⁾の提案したべき乗貯留関数を採用した。RTモデルや融 雪熱量温度計モデルから表面融雪量が算出されると、べき 乗貯留関数を使用した積雪層浸透モデルから、

 $R = m'S^{3} \cdot \cdot \cdot (3)$ $dS/dt = (M+P) - R \cdot \cdot \cdot (4)$

積雪層を通過して積雪底面から流出する積雪底面流出量 (R)が算出される。ここで、R:積雪底面流出量 (mm)、P: 雨量 (mm)、S:貯留量 (mm)、M:表面融雪量 (mm)、 m':係数となる。実測値に対する重回帰分析から係数はm' =2.0×10⁴とした。

3.2 観測データに基づいた統計モデル

3.2.1 モデルの構成

積雪融雪観測の観測値を使用した統計的推定法は、積 雪表面で外環境の気温から積雪が融解する融雪量を推定 する「表面融雪量算出」と、その表面融雪水が積雪層内を 浸透して積雪底面まで通過していくことを表現する「積雪層 内通過量算出」と、積雪層を通過するのに要する時間を遅 れ時刻として表現する「遅延処理」の、3段階で構成した。

全ての機器が出力する観測項目から、積雪底面からの流 出量に関連の強い項目を選定し、気温計・雨量計・融雪熱 量温度計(透明・黒塗)・積雪深計の出力値を説明変数と して、各段階での推定式を決定した。表面融雪量算出のス テップでは、2つのモデルを構築した。融雪熱量温度計(透 明)を入力とする統計モデル(透明)と、融雪熱量温度計(黒 塗)を入力データとする統計モデル(黒塗)である。2段階 目となる積雪層内通過量算定では、表面融雪量算定の段階 でどちらのモデルを使用したかによって異なる定数の推定式と した。最終段階となる遅延処理では共通の推定式とした。

3.2.2 表面融雪量算出

気温・雨量・融雪熱量温度(透明・黒塗)を説明変数と した線形から3次までの多項式を推定式と仮定してフィッティン グを行い、推定式を決定した。表面融雪量算定の推定式は、 次のような2次多項式となった。

$R_M = a_I x^2 + b_I x + c_I \qquad \cdot \quad \cdot \quad (5)$

ここで、 R_M :表面融雪量 (mm)、x:融雪熱量温度計(透明: $x=x_i$ 、あるいは黒塗: $x=x_b$)、係数: a_1 , b_1 , c_1 である。 観測データを使用して、3つの係数のパラメータ推定を行なっ た。融雪熱量温度計(黒塗)の計測値を入力データとして 使用する場合は、 $a_1=4.0\times10^4$ 、 $b_1=0.013$ 、 $c_1=0.06$ 、融雪 熱量温度計(透明)の計測値を入力データとして使用する 場合は、 $a_1=4.0\times10^4$ 、 $b_1=0.014$ 、 $c_1=0.05$ となった。

3.2.3 積雪層内通過量算出

表面での融解および降雨によって融雪水が積雪表面に発 生した場合、その後、積雪層内を融雪水が浸透流下する。 このときに、浸透流下しようとする融雪水の量と、積雪の量(深 さ)あるいは積雪内部の乾燥状態との兼ね合いで、融雪水 が積雪底面にまで達するか、あるいは積雪層内に留まるかと いった現象が起こりえる。そこで、融雪水と降雨が供給され たとき、その積雪層を通過する水量を次のようなべき乗関数 を用いて推定する。

 $R_{P} = (R_{M} + R_{r}) (1 - k_{I}D^{n_{I}}) \cdot \cdot \cdot (6)$

ここで、 R_P :積雪層内通過量 (mm)、 R_M :表面融雪量 (mm)、 R_r :降雨量 (mm)、D:積雪深 (mm)、係数: k_1 , n_1 である。 3.3.2と同様に観測データを使用して2つの係数を求めた。融 雪熱量温度計 (黒塗)の計測値から R_M を算出した場合は、 k_1 =1.4×10⁵、 n_1 =1.4、融雪熱量温度計 (透明)から R_M の場合は、 k_1 =1.2×10⁵、 n_1 =1.4となった。

3.2.4 遅延処理

積雪層内を融雪水が浸透流下して積雪底面までに到達す るのに要する時間(タイムラグ)は、積雪深や積雪層内部 の飽和度に大いに影響される。一方、日射や気温上昇など の熱量を受けている日中に分単位で融雪水量を推定すること が、鉄道運行に利用する場合に望ましい。そのためには、 表面融雪現象と積雪底面流出が発現するまでのタイムラグを 考慮した時系列情報として推定することが必要になる。

タイムラグを遅延時間として処理をする方法としては、ここ では、融雪水量の推定を行う時間間隔を単位として、処理 が行われるタイムステップの回数を遅延処理として算定するこ ととした。遅延時間算出の推定式は、

 $N_d = k_2 D^{n_2} \cdot \cdot \cdot (7)$

ここで、 N_d :遅延回数、D:積雪深 (mm)、係数: k_2 、 n_2 である。遅延回数は、解析上のタイムステップの回数と考え、 例えば、10分ピッチに推定解析を実施しているのであれば、 遅延時間は N_d ×10分となり、式 (6)で求めた R_p の水量が (N_d ×10)分後に積雪底面流出として地表面に供給されることを 表現する。観測データを対象としたパラメータ推定から、融 雪熱量温度計の透明と黒塗のどちらに対しても同じ k_2 =1.05 ×10³、 n_2 =1.3となった。

4. 推定解析の結果と考察

3章で構築した推定モデルを使用して、観測地での融雪 期における積雪底面流出量の推定解析を実施した。RTモ デルによる推定と融雪ライシメータの観測値を図6に示す。融 雪ライシメータの観測値は正しい実測値と判断しているので、 図6は推定の精度を示している。

RTモデルは1時間毎の時間間隔で推定解析しているため、 融雪ライシメータの実測値も図6では1時間単位での数値に換 算している。積雪底面流出のタイミングに関する傾向について は、時系列の波形として比較的同じと認められる結果となって いる。このRTモデルでの実測値とのRMSEは0.66mm/hとな り、融雪最盛期(4月後半)の融雪強度が4~6mm/hである のに対して、推定誤差が10%程度であることが判る。

一方、統計モデルは、観測データの出力時間間隔毎に推定を行うため、ここでは10分ごとの推定値の算出となる。統計モデル(透明)でのRMSEは0.1737mm/10min、統計モデル(黒塗)でのRMSEは0.1730mm/10minであった。

観測地での観測データを基に設定した推定モデルのまま で、この観測地の近隣にある駅で観測しているデータを用い て推定解析を行なった。4つのモデルによる融雪水推定量を 図7に示す。駅での観測ピッチが10分間隔であったため、1 時間ピッチでの推定係数を求めているRTモデルと融雪熱量 温度計モデルについては、換算の処理を行なっている。4つ の推定モデルによる積雪底面流出量は、RTモデルが最も小 さな数値を示し、その次に融雪熱量温度計モデル、統計モ デル(透明・黒塗)の順の傾向が認められる。これは熱収 支法の理論解に対して、使用している観測機器の熱量計測 に対する精度を含み、それぞれの推定モデルの精度の順序 とも一致している。

図7 4つの推定モデルによる融雪水量推定の比較(2010.4.9-5.4)

5. 今後の進め方

観測データを基に4つの融雪水量推定モデルを構築し、 2009/10冬季の観測データを基にパラメータの最適化してシ ステムの同定を行い、各推定式を提案できた。推定の精度 は誤差が10%程度であることがわかったが、今後は、 2010/11冬季観測データを待って精度評価および推定方法 の整合性について検討する。また、営業線沿線に試験的に 設けた観測機器を使用した融雪水量モニターランを試行し て、4つの推定モデルの評価や具体的な鉄道事業への適用 方法の検討を行う。

参考文献

- Kattelmann,R.,C.,: Snowmelt lysimeters: design and use, Proceedings of the 52th Western Snow Conference, pp.68-79, 1984.
- 2)河島・松元・伊豫部・外狩・島村・廣瀬:時間融雪量を推 定するための簡易センサの開発とその精度評価,雪氷研究大 会概要集,2010.9,
- 3) 松元・河島・外狩・島村:気温・日射量を指標とする表面融 雪量モデルと積雪層モデルとを組み合わせた積雪底面流出 量の推定,雪氷, no.72, vol.4, pp255-270,日本雪氷学会誌, 2010.7
- Konya,K., et. al.: Surface heat balance and spatially distributed ablation modeling at Koryto Glacier, Kamchatka Peninsula, Russia, Geografiska Annaler, 86A, 337-348, 2004.
- 5) 中津川・工藤・星:積雪貯留を考慮した汎用的な融雪流出 解析,水工学論文集,vol.48, 37-42, 2004.2