<u>pecial edition paper</u>

新幹線車両用サイクロン式集塵装置の開発

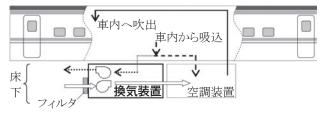
Development of Cyclone Dust Collector for Shinkansen Trains

Rolling stock of Shinkansen are equipped with equipment that keeps passenger cabins ventilation volume constant. For this system, a non-woven fabric filter is used on the fresh-air inlet to prevent dust intrusion. Since filter clogging causes to decline ventilation volume, we need periodical maintenance. We are developing a cyclone dust collector as a substitute for the filter in order to prevent decline in ventilation volume and to reduce maintenance.

▶キーワード:新幹線車両、換気装置、塵埃、フィルタ、メンテナンス、サイクロン式

はじめに

新幹線車両に搭載される換気装置には、塵埃侵入を防ぐ ため、新鮮外気の給気口に不織布のフィルタを設けているも のがある。このフィルタに塵埃が蓄積し、目詰まりが進行する と給気量が低下していく。それを防止するために定期的なメ ンテナンスを行っているが、塵埃の多くなる時季には定期メン テナンスでは間に合わず、臨時のメンテナンスが必要になっ ている。


このような背景から、フィルタの目詰まりによる給気量低下 の防止およびメンテナンス軽減のため、フィルタに代わる塵埃 除去方法として、新幹線車両に適用可能なサイクロン式集 塵装置の開発を行っている。

新幹線車両の車内換気の概要

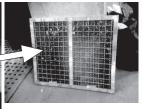
車体の気密構造と換気

高速走行を行う新幹線車両は、トンネルを通過する際の 車外圧力の変動が激しく、その急激な圧力変動が車内に伝 わると、耳ツン現象、扉の開閉不具合、水を使用する箇所 での逆流といった様々な不具合が発生することが、東海道 新幹線開業当時から知られている10。この急激な圧力変動 を緩和するために車体は気密構造となっている。

それゆえ、気密構造の車体は、その構造により車内の自 然換気が行えないため、各車両に配置している換気装置に より強制的に換気を行っている。新幹線車両の車内換気の 概略を図1に示す。

⇒新鮮気 → 空調気 **- ->**リターン気 ·····**>** 排気

図1 新幹線車両の車内換気の概略


2.2 換気装置による車内圧力調整

換気装置は、自らを通じて車内に伝わる車外圧力の変動 を抑制するために、給気側と排気側に静圧の高い送風機を 設け、車外圧力の急激な変動を吸収しつつ、給気・排気 のバランスを取る仕組みとなっている。このとき、車内圧力は 車外圧力に比べて僅かに高くなるよう調整され、車両の各 設備は、それに合わせた構造となっている。換気装置フィル タの目詰まりが進行すると、給気側からの空気取り入れ量が 減少してしまうが、排気側では車内の空気を吐き出す量に 変化がないため、吐き出す量の方が多くなり車内圧力が低 下してしまう。

このような事象を未然に防ぐため、車両の定期検査時に フィルタのメンテナンスを行っている。塵埃が多くなる時季には、 目詰まりの進行がさらに早くなるため、定期検査時以外にも フィルタのメンテナンスが必要となるが、他の車両の定期検 査の合間を縫って実施するため、計画的な作業が困難であ り、メンテナンス上の課題となっている。図2に換気装置と、 そのフィルタを示す。

Special edition paper

換気装置(車体外側から見る)

フィルタ

図2 新幹線車両の換気装置とフィルタの例

サイクロン式集塵装置の開発

換気装置のフィルタ目詰まりによる給気量低下防止および フィルタのメンテナンスの課題を解決するために、フィルタに置 き換わる新たな集塵方式として開発したサイクロン式集塵装 置の概要について述べる。

3.1 集塵対象物の選定

換気装置が吸込む塵埃について調査したところ、物質とし ては、砂状の物質、綿埃、枯葉などの植物、羽毛、虫が 存在し、その中でも図3に示すような砂状の物質が大部分を 占めており、その粒子径は、数十μm~数百μmであった。 そこで、本開発では10µm~500µm程度の粒子を集塵対象 サイズとした。



図3 砂状の物質

3.2 集塵方式の選定

集塵装置方式については、国立環境研究所の"環境技術 解説"2)によると、表1のように大別でき、集塵の用途により選 定されている。新幹線車両用としては、対象粒径、集塵率 を考慮すると、遠心式(サイクロン式)が適切と考えられる。 また、構造上目詰まりし難い、換気装置の吸引力のみで動 作可能なため、新たな動力源が不要という特徴もあることか ら、サイクロン式集塵装置を開発対象として選定した。

表1 集塵装置の方式と特徴

集塵方式	特徴	対象粒径 [μm]	集塵率 [%]
重力式	気体中の粒子を重力による落下で分離	1000~50	40~60
慣性式	気体の流れる向きを変えて、粒子に働 く慣性力で分離	100~10	50~70
遠心式	気体を筒内部で回転させ、粒子を遠心 力で分離	100~3	85~95
洗浄式	液体の中に気体を通過させるか、気体 に液体を注入するか、又は両者を併用 して液体に吸着させる	100~0.1	80~95
ろ過式	ろ材を通して、気体から粒子を分離	20~0.1	90~99
電気式	粉塵を帯電させ、逆に帯電した電極板 に吸着させる	20~0.05	90~99.9

集塵率: (捕集した塵埃量/与えた塵埃量)×100

図4に一般的なサイクロン式集塵装置(以下、「集塵装置」 と言う。) の仕組みを示す。

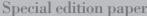
排気口

- ① 排気口から吸引することで、給気口か ら塵埃を含んだ空気を吸込む。
- ② 吸込んだ空気は円筒内で竜巻状の気流 になり塵埃が遠心力で円筒内壁に沿っ て回転して下降。
- ③ 円筒中心付近の空気を吸い上げること で塵埃が除去された空気を得る。

図4 一般的なサイクロン式集塵装置の仕組み

3.3 集塵装置の設計

集塵装置を車両に搭載するために、装置構成を集塵機 能部の「本体」、集塵装置と換気装置をつなぐ「つなぎダク ト」および「吊柱・吊金具」とした。これは、取付けスペー スの都合だけでなく、集塵装置の着脱時に作業員が持てる よう重量を分散させることも考慮している。なお、装着する際 は換気装置のフィルタを撤去する。図5に構成部品イメージ、 図6に換気装置への取付けイメージを示す。



つなぎダクト

集塵装置一式(吊金具付き) 本体• 吊柱

図5 集塵装置の構成部品イメージ

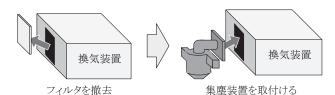
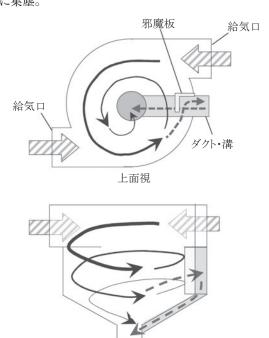



図6 換気装置への取付けイメージ

サイズについては、集塵装置が小さくなると、換気装置が 新鮮気を吸込む際の圧力損失が大きくなるため、新幹線車 両床下の狭い空間に搭載可能な最大限の寸法で検討した。 その結果、一般的なサイクロン式の集塵装置と異なり短胴体 とする必要から、集塵性能を確保するために、試作品は次 のような工夫をし、設計・製作を行った。構造を図7に示す。

- ①必要な風量を確保するため給気口を2つ設置。
- ②本体円筒部壁面に邪魔板、ダクト・溝を設けて積極的 に集塵。

側面視

- - ✓ ダクトに入る塵埃

▶ 気流上の塵埃

図7 集塵性能を確保するための工夫

製作した試作品により、単体試験を実施したところ、回収 した塵埃が再び舞上がってしまう現象が観測された。このた め、図8のように、底面をふさいで塵埃の回収経路をダクト経 由のみとする構造の改良を行った。その結果、この現象は 改善された。

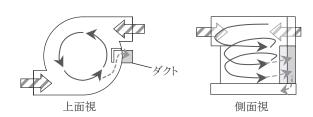


図8 回収済み塵埃舞上がり対策のための改良

3.4 現車搭載試験用試作品

現車試験に向けて試作した集塵装置の外観イメージを図9 に示す。給気口は金網状とし、大きな塵埃の侵入を防ぐ構 造とした。また、分離した塵埃は定期検査時に回収するため、 装置下部の箱に蓄積する構造とした。集塵装置を取り付け ることにより、換気装置にある風量調整板が操作できなくなる ため、集塵装置側に風量調整板を設けた。

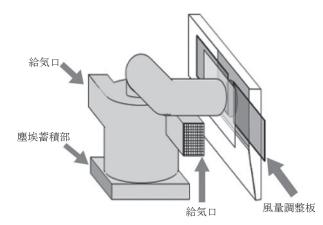


図9 現車搭載試験用の集塵装置の外観イメージ

Special edition paper

現車搭載試験

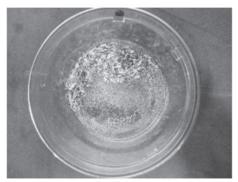
4.1 現車搭載試験

集塵装置をE7系新幹線車両に仮設し、定置状態での性能確認、および試運転列車による実フィールドで3日間の走行試験(3676.8km走行)を実施し、集塵装置の基礎データの取得及び現行フィルタとの集塵性能の比較を行った。車両への仮設搭載状況を図10に示す。なお、仮設時に、集塵装置の取り付け調整が難しいという課題が判明した。

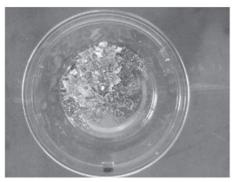
※車体中心側からレール方向を見る

図10 車両への集塵装置仮設搭載状況

4.2 基礎データ取得


集塵装置を換気装置に装着した状態で、次の2点について基礎データ取得し、換気装置が所定の性能を満たしていることを確認した。

- ①必要風量が確保できること。
- ②走行中の車内圧変動が基準値以内におさまること。


また、集塵装置装着車とフィルタ装着車の走行中の車内 騒音レベルを測定し比較したが、そのレベルに顕著な差は見られなかった。

4.3 集塵性能比較

走行試験後に回収した塵埃を図11に示す。回収した体積 は集塵装置の方が小さいように見える。これは、フィルタの 回収物にはフィルタに付着した枯葉等の大きな塵埃が含まれ ているのに対し、集塵装置は給気口の金網で本体内部に大 きな塵埃の侵入を阻止する構造になっており、塵埃蓄積部に は小さな塵埃のみが蓄積され、それが回収物となっているた めである。回収物の重量は集塵装置の方が大きいので、フィ ルタよりも多くの塵埃を回収できていると考える。

集塵装置(回収量16.5cm3 2.75g)

フィルタ(回収量24.4cm3 0.50g)

図11 走行試験で回収した塵埃の比較

5. おわりに

現状までの開発において、新幹線車両の換気装置の不 織布フィルタを集塵装置に置き換えて適用できる見込みを得 ることができた。今後は、取り付け調整の課題を改良した 集塵装置を設計・製作し、長期間車両に搭載する耐久性 能試験による確認を行い、営業列車での実用化を目指して いく。

参考文献

- 望月旭;新幹線電車の技術経緯,pp174~186、日本鉄道車 両機械技術協会、2014.3
- 2) 国立環境研究所、環境情報メディア、環境展望台、"環境技術解説"、ばいじん除去技術、 http://tenbou.nies.go.in/spiego./description/detail.php?id=24